Self-Assembly of Copper Oxide Core-Shell Nanowires Through Ethyl Alcohol
نویسنده
چکیده
The control of the core-shell structure at the nanometer is one of the most fundamental chal‐ lenges in condensed matter science [Deville et al., 2009; Woodley et al., 2008; Bannin, 2007; Ji et al., 2007; Lauhon et al., 2002]. One of the fundamental concepts regarding the synthesis of nanowires via the spontaneous self-organization of individual nanoparticles, called spontane‐ ous organization nanocrystals, refers to the formation of two-dimensional (2-D) and 3-D ar‐ rays of nanoparticles or nanowires [Tang et al., 2002; Lu et al., 2002; Balazs et al., 2006; Tang et al., 2006]. The copper-oxide based system, such as Cu2O [Huang et al., 2012; Hong et al., 2011; Yao et al., 2010], CuO [Wu, 2012; Cheng et al., 2007; Chou et al., 2008], and Cu2O@CuO [Yec et al., 2012], has been known to facilitate oxidation reactions in the bulk material, which may al‐ low it to be a cost effective substitute for noble metals in various catalytic systems. With recent developments in nanostructures synthesis leading to the ability to control size, reproducibility and structural complexity [Lauhon et al., 2002; Fan et al., 2006; Lu et al., 2005], it becomes worthwhile and possibly paramount to define specific target structures for the nanoparticles based on an understanding of the mechanism of the self-organization mechanism. Upto now, many complex procedures, such as vapor-liquid-solid, chemical vapor deposition, thermal evaporation, and chemical reactions, have been developed for the synthesis of one-dimension‐ al materials of Copper-based nano compounds [Huang et al., 2012; Hong et al., 2011; Yao et al., 2010]. In addition to these methods, solution chemical route including solvothermal, hydro‐ thermal, self-assembly, and template-assisted chemical vapor deposition has become a prom‐ ising option for large –scale production of nanomaterials, due to the simple, fast, and less expensive virtues [Xin et al., 2002; Li et al., 1999; Lu et al., 2000; Hung et al., 2004; Roy et al., 2003; Baxter et al., 2003]. However, a new type of immersing nanoparticles into liquid alcohol
منابع مشابه
Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors.
Copper nanowire networks are considered a promising alternative to indium tin oxide as transparent conductors. The fast degradation of copper in ambient conditions, however, largely overshadows their practical applications. Here, we develop the synthesis of ultrathin Cu@Au core-shell nanowires using trioctylphosphine as a strong binding ligand to prevent galvanic replacement reactions. The epit...
متن کاملOptically transparent water oxidation catalysts based on copper nanowires.
Let the light shine through: A transparent film of copper nanowires was transformed into an electrocatalyst for water oxidation by electrodepostion of Ni or Co onto the surface of the nanowires. These core-shell nanowire networks exhibit electrocatalytic performance equivalent to metal oxide films of similar composition, but are several times more transparent.
متن کاملVariation of the Electronic Functionality of Self-Seeded Germanium Nanowires through Synthesis Determined Core-Shell Interface States
Bottom up grown germanium nanowires may have an important role to play in future electronic devices. While the electrical properties of nanowires grown using a metallic seed as a catalyst have been extensively reported we study self-seeded nanowires in this thesis. Such wires are core-shell in nature and are grown without any intentional doping. Self-seeded nanowires have been previously propos...
متن کاملFabrication of nanostructure via self-assembly of nanowires within the AAO template
The novel nanostructures are fabricated by the spatial chemical modification of nanowires within the anodic aluminum oxide (AAO) template. To make the nanowires better dispersion in the aqueous solution, the copper is first deposited to fill the dendrite structure at the bottom of template. During the process of self-assembly, the dithiol compound was used as the connector between the nanowires...
متن کامل